MA 222 - Analysis II: Measure and Integration (JAN-APR, 2016)

A. K. Nandakumaran, Department of Mathematics, IISc, Bangalore Problem set 6

- 1. Give an example to show that the conditions of integrability and σ -finiteness cannot be dropped in *Fubini's Theorem*.
- 2. Let (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) be two σ -finite spaces. Let $f : X \to \mathbb{R}$ be \mathcal{F} -measurable and $g : Y \to \mathbb{R}$ is \mathcal{G} -measurable. Show that $h : X \times Y \to \mathbb{R}$ defined by h(x, y) = f(x)g(y) is $\mathcal{F} \times \mathcal{G}$ measurable.
- 3. Let (X, \mathcal{F}) be measurable space and $f: X \to \mathbb{R}$ is measurable function. Define

$$V^*(f) = \{(x, y) \in X \times \mathbb{R}, 0 \le y \le f(x)\}$$

and

$$V_*(f) = \{(x, y) \in X \times \mathbb{R}, 0 \le y < f(x)\}.$$

Prove

- (a) If $f \ge 0$ and simple, then V^* and V_* are measurable in $X \times \mathbb{R}$.
- (b) $V_*(f_n) \uparrow V_*(f)$ if $f_n \uparrow f$. If $f_n \downarrow f \ge 0$, then $V^*(f_n) \downarrow V^*(f)$.
- (c) If $f \ge 0$, show that V^*, V_* are measurable in $X \times \mathbb{R}$.
- (d) Let $G(f) = \{(x, y) : f(x) = y\}$ is the graph of f. Show that G(f) is measurable in $X \times \mathbb{R}$.
- (e) If μ is the Lebesque measure on \mathbb{R} , ν is the σ -finite measure on (X, \mathcal{F}) . Assume $f \geq 0$. Show that $\mu \times \nu(V_*(f)) = \nu \times \mu(V^*(f)) = \int f d\mu$. (This is a more precise formulation of the notion that the integral is the area under the curve.)
- 4. Use *Fubini's Theorem* and other theorems on integration to integrate i) $\int_{\mathbb{R}} e^{x^2} dx = \sqrt{\pi}$,

ii)
$$\lim_{N \to \infty} \int_0^N \frac{\sin x}{x} = \frac{\pi}{2}$$
 (Hint: Use $\frac{1}{x} = \int_0^\infty e^{-xt} dt$)

5. i) Let $a_{i,j}$ be sequence of non-negative numbers, use *Fubini's Theorem* (Define appropriate measure spaces) to show that $\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{i,j} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i,j}$.

ii) Let $a_{i,j}$ be any double sequence such that $\sum_{i,j} |a_{i,j}| < \infty$, then also prove that the above equality.

6. Let $X = Y = \mathbb{R}$, $\mu = \nu$ =Lebesque measure. Then $\mu \times \nu$ is the two dimensional L-measure on $\mathbb{R} \times \mathbb{R}$, denote by dxdy for $d(\mu \times \nu)$

i) Let $E \subset \mathbb{R}$ measurable, show that $\sigma(E) = \{(x, y) : x - y \in E\}$ is measurable in \mathbb{R}^2 . (*Hint:* Prove it for open sets, G_{δ} sets, sets of measure zero and finally for general measurable sets.)

- ii) Let f, g are measurable on \mathbb{R} . Show that F(x, t) = f(x t)g(y) is measurable in \mathbb{R}^2 .
- 7. If g is measurable on [0,1], show that f(x,y) = f(x) g(y) is measurable on $[0,1] \times [0,1]$. Further, show that if f is integrable on $[0,1] \times [0,1]$, then g is integrable on [0,1].