MA 222 - Analysis II: MEasure and Integration (JAN-APR, 2016)

A. K. Nandakumaran, Department of Mathematics, IISc, Bangalore
Problem set 6

1. Give an example to show that the conditions of integrability and σ-finiteness cannot be dropped in Fubini's Theorem.
2. Let (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) be two σ-finite spaces. Let $f: X \rightarrow \mathbb{R}$ be \mathcal{F}-measurable and $g: Y \rightarrow \mathbb{R}$ is \mathcal{G}-measurable. Show that $h: X \times Y \rightarrow \mathbb{R}$ defined by $h(x, y)=f(x) g(y)$ is $\mathcal{F} \times \mathcal{G}$ measurable.
3. Let (X, \mathcal{F}) be measurable space and $f: X \rightarrow \mathbb{R}$ is measurable function. Define

$$
V^{*}(f)=\{(x, y) \in X \times \mathbb{R}, 0 \leq y \leq f(x)\}
$$

and

$$
V_{*}(f)=\{(x, y) \in X \times \mathbb{R}, 0 \leq y<f(x)\} .
$$

Prove
(a) If $f \geq 0$ and simple, then V^{*} and V_{*} are measurable in $X \times \mathbb{R}$.
(b) $V_{*}\left(f_{n}\right) \uparrow V_{*}(f)$ if $f_{n} \uparrow f$. If $f_{n} \downarrow f \geq 0$, then $V^{*}\left(f_{n}\right) \downarrow V^{*}(f)$.
(c) If $f \geq 0$, show that V^{*}, V_{*} are measurable in $X \times \mathbb{R}$.
(d) Let $G(f)=\{(x, y): f(x)=y\}$ is the graph of f. Show that $G(f)$ is measurable in $X \times \mathbb{R}$.
(e) If μ is the Lebesque measure on \mathbb{R}, ν is the σ-finite measure on (X, \mathcal{F}). Assume $f \geq 0$. Show that $\mu \times \nu\left(V_{*}(f)\right)=\nu \times \mu\left(V^{*}(f)\right)=\int f d \mu$. (This is a more precise formulation of the notion that the integral is the area under the curve.)
4. Use Fubini's Theorem and other theorems on integration to integrate i) $\int_{\mathbb{R}} e^{x^{2}} d x=\sqrt{\pi}$,
ii) $\lim _{N \rightarrow \infty} \int_{0}^{N} \frac{\sin x}{x}=\frac{\pi}{2}$ (Hint: Use $\frac{1}{x}=\int_{0}^{\infty} e^{-x t} d t$)
5. i) Let $a_{i, j}$ be sequence of non-negative numbers, use Fubini's Theorem (Define appropriate measure spaces) to show that $\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{i, j}=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i, j}$.
ii) Let $a_{i, j}$ be any double sequence such that $\sum_{i, j}\left|a_{i, j}\right|<\infty$, then also prove that the above equality.
6. Let $X=Y=\mathbb{R}, \mu=\nu=$ Lebesque measure. Then $\mu \times \nu$ is the two dimensional L-measure on $\mathbb{R} \times \mathbb{R}$, denote by $d x d y$ for $d(\mu \times \nu)$
i) Let $E \subset \mathbb{R}$ measurable, show that $\sigma(E)=\{(x, y): x-y \in E\}$ is measurable in \mathbb{R}^{2}. (Hint: Prove it for open sets, G_{δ} sets, sets of measure zero and finally for general measurable sets.)
ii) Let f, g are measurable on \mathbb{R}. Show that $F(x, t)=f(x-t) g(y)$ is measurable in \mathbb{R}^{2}.
7. If g is measurable on $[0,1]$, show that $f(x, y)=f(x)-g(y)$ is measurable on $[0,1] \times[0,1]$. Further, show that if f is integrable on $[0,1] \times[0,1]$, then g is integrable on $[0,1]$.

